Host restriction phenotypes of Salmonella typhi and Salmonella gallinarum.

نویسندگان

  • L Pascopella
  • B Raupach
  • N Ghori
  • D Monack
  • S Falkow
  • P L Small
چکیده

Salmonella typhi and Salmonella gallinarum phenotypes correlated with mouse host restriction have been identified by using in vitro and in vivo systems. S. typhi is capable of entering the murine intestinal epithelium via M cells, as is Salmonella typhimurium, which causes systemic infection in the mouse. But, unlike S. typhimurium, S. typhi does not destroy the epithelium and is cleared from the Peyer's patches soon after M-cell entry. S. gallinarum appears to be incapable of entering the murine Peyer's patch epithelium. Our in vitro evidence suggests that S. gallinarum is taken up in murine phagocytic cells by a mechanism different from that of S. typhimurium. S. typhimurium is taken up at a higher frequency and is maintained at higher viable counts throughout a 24-h time course in a murine macrophage-like cell line than are S. gallinarum and S. typhi.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genomic Comparison between Salmonella Gallinarum and Pullorum: Differential Pseudogene Formation under Common Host Restriction

BACKGROUND Salmonella serovars Enteritidis and Gallinarum are closely related, but their host ranges are very different: the former is host-promiscuous and the latter can infect poultry only. Comparison of their genomic sequences reveals that Gallinarum has undergone much more extensive degradation than Enteritidis. This phenomenon has also been observed in other host restricted Salmonella sero...

متن کامل

Polyamines are essential for virulence in Salmonella enterica serovar Gallinarum despite evolutionary decay of polyamine biosynthesis genes.

Serovars of Salmonella enterica exhibit different host-specificities where some have broad host-ranges and others, like S. Gallinarum and S. Typhi, are host-specific for poultry and humans, respectively. With the recent availability of whole genome sequences it has been reported that host-specificity coincides with accumulation of pseudogenes, indicating adaptation of host-restricted serovars t...

متن کامل

A Rab32-dependent pathway contributes to Salmonella typhi host restriction.

Unlike other Salmonellae, the intracellular bacterial human pathogen Salmonella Typhi exhibits strict host specificity. The molecular bases for this restriction are unknown. Here we found that the expression of a single type III secretion system effector protein from broad-host Salmonella Typhimurium allowed Salmonella Typhi to survive and replicate within macrophages and tissues from mice, a n...

متن کامل

Contribution of the Type VI Secretion System Encoded in SPI-19 to Chicken Colonization by Salmonella enterica Serotypes Gallinarum and Enteritidis

Salmonella Gallinarum is a pathogen with a host range specific to poultry, while Salmonella Enteritidis is a broad host range pathogen that colonizes poultry sub-clinically but is a leading cause of gastrointestinal salmonellosis in humans and many other species. Despite recent advances in our understanding of the complex interplay between Salmonella and their hosts, the molecular basis of host...

متن کامل

Modified Intracellular-Associated Phenotypes in a Recombinant Salmonella Typhi Expressing S. Typhimurium SPI-3 Sequences

A bioinformatics comparison of Salmonella Pathogenicity Island 3 sequences from S. Typhi and S. Typhimurium serovars showed that ten genes are highly conserved. However three of them are pseudogenes in S. Typhi. Our aim was to understand what functions are lost in S. Typhi due to pseudogenes by constructing a S. Typhi genetic hybrid carrying the SPI-3 region of S. Typhimurium instead of its own...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 63 11  شماره 

صفحات  -

تاریخ انتشار 1995